相关内容
-
记忆合金3D打印新应用!多频段覆盖、无机械驱动的可自主变形天线
在无线通信时代,天线无处不在。从手机到卫星,从飞机到无人机,不同频段、不同用途的天线让我们的通信需求得以满足。然而,随着6G时代的临近,频段共享成为必然趋势,这意味着设备需要在多个频段之间自如切换。约翰霍普金斯大学应用物理实验室的研究人员带来了一个令人振奋的突破 - 利用3D打印技术制造的形状记忆合金天线,能够通过热驱动在不同形态间自由切换,一个天线就能完成多个天线的工作。
-
我国增材制造技术与产业发展研究
增材制造作为新兴的制造技术,应用领域不断扩展,成为先进制造领域发展最快的技术方向之一;增材制造产业的发展为现代制造业的培育壮大以及传统制造业的转型升级提供了宝贵契机。
清华大学Science:全新无机纳米材料3D打印技术!
3D打印是一项革命性的增材制造技术,具有广阔的应用前景。目前3D打印技术在复杂结构建立与规模化制造都取得了显著进展,但实现纳米级分辨率的3D打印可选择的材料有限,主要集中在金属与聚合物。三维结构的构建需要在打印的基本构建单元之间形成作用力,以使构建单元连接在一起,金属与聚合物可以很容易通过键合反应得到金属-金属键或共价键使其连接从而实现3D打印。这些强的化学键使得3D打印结构稳定存在,金属与塑料3D打印飞速发展。
在其他功能材料特别是无机半导体中,这种键合反应无法在纳米级分辨率发生。半导体中化学键通常需要在高温、真空、惰性气氛保护等特殊的条件中生成,且涉及复杂的化学反应,这样的反应无法在特定位置被触发,现有的3D打印设备也难以与这些特殊条件集成,因此半导体难以构建精密的三维结构。在直接合成困难的情况下,使用无机纳米晶体作为构建单元成为了替代的加工方法。但目前的方法通常将无机材料与有机光固化树脂混合进行加工,有机组分的大量存在会严重影响无机材料的本征性能。
鉴于此,清华大学化学系张昊副教授、李景虹院士、精密仪器系林琳涵副教授、孙洪波教授共同开发了一种普适性的纳米材料3D打印新方法,简称为3D Pin,通过引入光敏氮宾小分子,实现了多种无机纳米材料(半导体、金属、氧化物纳米材料)的纳米级3D打印,结构具有高的无机组分占比,并具有优异的力学性能与可调谐的光学性能。相关研究成果以题为“3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals”发表在最新一期《Science》上。
▲论文链接:
3D Pin工作原理
声 明:文章内容来源于高分子科技前沿。仅作分享,不代表本号立场,如有侵权,请联系小编删除,谢谢!