分享至手机分享至手机
关注展会官微关注展会官微

Share to Mobile

您的位置:首页>新闻中心>行业资讯

行业资讯

传递行业最新前沿资讯

参观登记

相关内容

  • 记忆合金3D打印新应用!多频段覆盖、无机械驱动的可自主变形天线

    在无线通信时代,天线无处不在。从手机到卫星,从飞机到无人机,不同频段、不同用途的天线让我们的通信需求得以满足。然而,随着6G时代的临近,频段共享成为必然趋势,这意味着设备需要在多个频段之间自如切换。约翰霍普金斯大学应用物理实验室的研究人员带来了一个令人振奋的突破 - 利用3D打印技术制造的形状记忆合金天线,能够通过热驱动在不同形态间自由切换,一个天线就能完成多个天线的工作。

  • 我国增材制造技术与产业发展研究

    增材制造作为新兴的制造技术,应用领域不断扩展,成为先进制造领域发展最快的技术方向之一;增材制造产业的发展为现代制造业的培育壮大以及传统制造业的转型升级提供了宝贵契机。

主流3D打印工艺制备SiC陶瓷的优缺点


碳化硅陶瓷是一种具有高强度、高硬度、高热导率、高化学稳定性等优异性能的陶瓷材料,被广泛应用于航空航天、微电子、汽车工业、核工业等领域。近年来,汽车工业、航空航天等领域都对大尺寸、复杂结构的零部件有强烈的需求。


202412141631264413.png

碳化硅陶瓷的广泛应用


目前对各种复杂结构形状SiC陶瓷需求急剧增加,传统的制造方法复杂、耗时、模具设计制作周期长。由于其极高的硬度和脆性,导致其加工极其困难。刀具不仅磨损严重,而且还可能产生裂纹等缺陷,难以达到良好的表面质量和尺寸精度。基于以上缺点,结合3D打印技术的SiC陶瓷制备技术成为目前研究和应用的主要发展方向,能良好地解决传统陶瓷材料复杂形状难成型、难加工,制作周期长、成本高的问题。


当前,3D打印工艺制造陶瓷的技术种类主要包括SLS (激光粉末烧结)、DIW(直接墨水书写)、SLA (光固化)、和BJ (粘结剂喷射)以及FDM(熔融挤出),上海硅酸盐所的科研人员对这几种的陶瓷3D打印技术进行了测试与认证。


与金属3D打印不同的是,陶瓷材料不能通过激光加热陶瓷粉末直接打印。直接SLS制件在烧结过程中产生的热应力难以避免产生裂纹,导致最终产品力学性能较差。


直接墨水书写(DIW)技术是将陶瓷粉末与各种有机物混合,制成陶瓷墨水,然后通过打印机将其打印到成形平面上形成陶瓷坯体。目前,该技术的难点是墨水中的固相含量太低,这会导致陶瓷坯体致密度较低。


202412141632519531.png

采用直接墨水书写技术3D打印的Al2O3坯体


SLA是一种基于光敏陶瓷浆料光聚合的有效紫外光固化技术,是当前主流的陶瓷3D打印工艺,但由于碳化硅的高吸光度、高折射率,限制了浆料的固化厚度、固含量等参数。


粉体熔融沉积成型(FDM)3D打印技术在传统熔融沉积方法的基础上,采用粉体混炼然后挤出机构3D打印制备SiC陶瓷,该方法具有以下优点:可粉体打印,原料制备方便;在常温状态下,粘接剂粘结力强;在高温状态下,粘接剂流动性好;在打印过程中可以通过温控消除应力;打印样品在常温下强度大;打印产品可常压烧结制备或反应烧结制备SiC陶瓷;打印料可循环利用。


BJ工艺可以快速打印复杂形状,同时保持打印精度。然而,BJ工艺限制了粉末的填充密度,导致SiC体积分数受限。


202412141632429307.png

NASA格伦研究中心采用粘结剂喷射技术打印的SiC陶瓷复合材料涡轮发动机部件


常规的3D打印方法制备陶瓷材料,往往有机物含量较高,有利于打印成型,而陶瓷固含量相对较低,采用常压烧结方法一般材料难以达到高致密度,而SiC反应烧结是通过浸渗的熔融硅与坯体内的碳反应,将坯体中的SiC颗粒结合起来,从而实现陶瓷致密化。相比于常压烧结和热压烧结等常规方法,更容易实现材料致密化,同时反应烧结具有烧结温度低、烧结前后尺寸变化小等特点。



声   明:文章内容来源于中国工陶。仅作分享,不代表本号立场,如有侵权,请联系小编删除,谢谢!



关注官微

202412141633026392.jpg

加入群聊

202412141633114255.jpg